Опубликовано пользователем Amalthea

Дворик Архимеда
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Изучение динамики вращательного движения твердого тела преследует следующую цель: познакомить учащихся с законами движения тел под действием моментов приложенных к ним сил. Для этого необходимо ввести понятие момента силы, момента импульса, момента инерции, изучить закон сохранения момента импульса относительно неподвижной оси.Изучение вращательного движения твердого тела целесообразно начать с изучения движения материальной точки по окружности. В этом случае легко ввести понятие момента сил относительно оси вращения и получить уравнение вращательного движения. Необходимо заметить, что эта тема является трудной для усвоения, поэтому для лучшего понимания и запоминания главных соотношений рекомендуется проводить сопоставления с формулами для поступательного движения. Учащимся известно, что динамика поступательного движения изучает причины возникновения ускорения тел и позволяет вычислить их направления и величину. Второй закон Ньютона устанавливает зависимость величины и направления ускорения от действующей силы и массы тела. Динамика вращательного движения изучает причины появления углового ускорения. Основное уравнение вращательного движения устанавливает зависимость углового ускорения от момента силы и момента инерции тела.
Далее, рассматривая твердое тело как систему материальных точек, вращающихся по окружности, центры которых лежат на оси вращения твердого тела, легко получить уравнение движения абсолютно твердого тела вокруг неподвижной оси. Трудность решения уравнения состоит в необходимости вычисления момента инерции тела относительно его оси вращения. Если нет возможности ознакомить учащихся с методами вычисления моментов инерции, например, из-за их недостаточной математической подготовки, то можно без вывода дать значения моментов инерции таких тел как шар, диск. Как показывает опыт, учащиеся с трудом усваивают понятие о векторном характере угловой скорости, момента силы и момента импульса. Поэтому необходимо выделить возможно большее время для изучения этого раздела, рассмотреть большее число примеров и задач (или делать это на внеклассных занятиях).
Продолжая аналогию с поступательным движением, рассмотрите закон сохранения момента импульса. При изучении динамики поступательного движения отмечалось, что в результате действия силы изменяется импульс тела. При вращательном движении изменяется момент импульса под действием момента силы. Если момент внешних сил равен нулю, то момент импульса сохраняется.
Ранее отмечалось, что внутренние силы не могут изменять скорость поступательного движения центра масс системы тел. Если же под действием внутренних сил изменить расположение отдельных частей вращающегося тела, то сохраняется общий момент импульса, а угловая скорость системы изменяется.

Вращательное движение представляет одно из наиболее общих и поразительных свойств Вселенной. Планеты и их спутники, звезды, вращающиеся вокруг своих осей, планеты, вращающиеся вокруг Солнца, вращающиеся двойные звезды, звезды и их спутники, вращающиеся вокруг центров своих галактик, многие галактики входят в состав вращающихся вихревых скоплений. В более простых случаях это смерчи, водовороты, вращение колес экипажей, вращение игрушечного волчка, вращение электронов в атомной модели Бора и т.д.



Какая причина заставляет все это вращаться? Начнем выяснение этого с простого случая: вращательного движения материальной точки. При движении материальной точки по окружности ее скорость может изменяться как по величине, так и по направлению. Поэтому ускорение точки целесообразно разложить на нормальное ускорение











С учетом этих соотношений получим, что




Рис. 4.4. К определению момента силы относительно неподвижной оси
Необходимо учесть, что сила имеет направление и может как увеличивать угловую скорость, так и уменьшать. Условно можно принять, что одно из направлений движения точки, например против часовой стрелки, является положительным. Тогда момент силы можно считать положительным, если сила увеличивает скорость вращения в направлении против часовой стрелки, и отрицательным - в противоположном случае.
Полученное уравнение движения (4.2) сходно с уравнением Ньютона




С учетом момента инерции уравнение (4.2) примет вид

Аналогию с уравнением поступательного движения можно продолжить, если его записать в виде




Учитывая, что




Хотя второй закон Ньютона для вращательного движения рассмотрен на примере материальной точки, тот же вид имеет уравнение вращательного движения абсолютно твердого тела вокруг неподвижной оси.
Абсолютно твердым телом можно считать тело, размеры и форму которого можно считать неизменными. Понятие абсолютно твердого тела является идеализацией реальных тел, так как все тела под действием приложенных сил в той или иной степени деформируются, то есть меняют форму и размеры. Однако, если деформации малы, то ими можно пренебречь и рассматривать тело как абсолютно твердое. Такое тело можно разбить на отдельные достаточно малые элементы, которые можно было бы рассматривать как материальные точки. При вращении тела вокруг неподвижной оси все эти точки движутся с одинаковыми угловыми скоростями по окружностям, центры которых лежат на оси вращения. Для каждого элемента массой Dm можно записать уравнение вращательного движения (4.5), а затем все эти уравнения почленно сложить. При этом сумма моментов внутренних сил будет равна нулю, так как согласно третьему закону Ньютона эти силы равны по величине и направлены по одной прямой в противоположные стороны. В результате получится уравнение вида

После суммирования этих уравнений получится уравнение



Момент импульса








Пример 1.

Пример 2.

Чтобы облегчить поворот тяжелой детали, рабочий использует рычаг, позволяющий сообщить детали требуемое угловое ускорение за счет небольшого усилия
МЕХАНИЧЕСКОЕ РАВНОВЕСИЕ
Раздел механики, в котором изучаются условия равновесия тел, называется статикой. Из второго закона Ньютона следует, что, если векторная сумма всех сил, приложенных к телу, равна нулю, то тело сохраняет свою скорость неизменной. В частности, если начальная скорость равна нулю, тело остается в покое. Условие, неизменности скорости тела можно записать в виде


Очевидно, что тело может покоиться только по отношению к одной определенной системе координат. В статике изучают условия равновесия тел именно в такой системе. Необходимое условие равновесия можно получить также, рассмотрев движение центра масс системы материальных точек. Внутренние силы не влияют на движение центра масс. Ускорение центра масс определяется векторной суммой внешних сил. Но если эта сумма равна нулю, то ускорение центра масс



Таким образом, первое условие равновесия тел формулируется следующим образом: скорость тела не меняется, если сумма внешних сил, приложенных в каждой точке, равна нулю. Полученное условие покоя центра масс является необходимым (но недостаточным) условием равновесия твердого тела.
Пример 3.


Может быть так, что все силы, действующие на тело, уравновешены, тем не менее, тело будет ускоряться. Например, если приложить две равных и противоположно направленных силы (их называют парой сил) к центру масс колеса, то колесо будет покоиться, если его начальная скорость была равна нулю. Если же эти силы приложить к разным точкам, то колесо начнет вращаться. Это объясняется тем, что тело находится в равновесии, когда сумма всех сил равна нулю в каждой точке тела. Но если сумма внешних сил равна нулю, а сумма всех сил, приложенных к каждому элементу тела, не равна нулю, то тело не будет находиться в равновесии, возможно, как в рассмотренном примере, вращательное движение. Таким образом, если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил.
Чтобы получить второе условие равновесия, воспользуемся уравнением вращательного движения




В общем случае произвольного числа внешних сил условия равновесия можно представить в следующем виде



Пример 4.





Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым (рис.4.7а). Если же центр масс расположен выше оси – состояние равновесия неустойчиво (рис.4.7б)
Особым случаем равновесия является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, то есть внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается.
Пример 5.

Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза, которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.
Пиза́нская ба́шня получила известность благодаря тому, что она сильно наклонена. Башня «падает». Высота башни составляет 55,86 метров от земли на самой низкой стороне и 56,70 метров на самой высокой стороне. Её вес оценивается в 14700 тонн. Текущий наклон составляет около 5,5°. Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.
Полагали, что кривизна башни задумана зодчими изначально – ради демонстрации своего незаурядного умения. Но куда более вероятно другое: архитекторы знали, что строят на крайне ненадежном фундаменте, и потому заложили в конструкцию возможность легкого отклонения.
Когда возникла реальная угроза обрушения башни, за нее взялись современные инженеры. Ее затянули в стальной корсет из 18 тросов, фундамент утяжелили свинцовыми блоками и параллельно укрепили грунт, закачивая под землю бетон. С помощью всех этих мер удалось уменьшить угол наклона падающей башни на полградуса. Специалисты говорят, что теперь она сможет простоять еще как минимум 300 лет. С точки зрения физики принятые меры означают, что условия равновесия башни стали более надежными.
Источник: Анохина И.Н., Нявро В.Ф. МЕХАНИКА // Методические рекомендации для преподавателей // Томск, 2007 г.